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Preface 

 Project 199105100 was initiated in 1991 in response to the Endangered Species Act (ESA) and 
the subsequent 1994 Northwest Power Planning Council Fish and Wildlife Program (FWP) call for 
regional analytical methods for monitoring and evaluation.  Primary objectives and management 
implications of this project include:  (1) to assist in the development of improved monitoring 
capabilities, statistical methodologies to aid management in optimizing operational and fish passage 
strategies to maximize the protection and survival of listed, threatened, and endangered Snake River 
and Columbia River salmon populations; (2) to design better analysis tools for evaluation programs; 
and (3) to provide statistical support to the Bonneville Power Administration and the Northwest 
fisheries community. 

 All studies in the current series, the Design and Analysis of Tagging Studies in the Columbia 
Basin, were conducted to help maximize the amount of information that can be obtained from fish 
tagging studies for the purposes of monitoring fish survival throughout its life cycle.  Volume IX of 
this series presents a statistical evaluation of methods for assessing the difference in smolt-to-adult 
returns (SARs) between transported smolts and inriver-migrating smolts.  This report investigates the 
transportation-to-inriver (T/I) ratio (previously called the transportation benefit ratio, TBR), a 
commonly used measure for assessing the benefits of transporting juvenile salmon around dams in 
barges or trucks, relative to leaving them in the river to navigate the dams in their outmigration to sea.  
The T/I ratio is the ratio of transported to untransported SARs.  This report describes the statistical 
properties of the T/I ratio using computer-intensive resampling techniques and analytical methods 
under different scenarios of survival and size of transported or inriver groups.  Recommendations are 
provided on the preferred methods of estimating the T/I ratio and confidence interval construction. 
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Abstract 

 The accuracy and precision of the widely used transportation-to-inriver (T/I) ratio estimator are 
investigated using analytical and Monte Carlo methods.  The T/I ratio is the ratio for smolt-to-adult 
(SAR) rates for transported and untransported salmonid smolts.  Repeated simulations of a binomial 
likelihood model under varying values of adult return rate, sample size, and true T/I ratio to examine 
the distributional properties of alternative T/I ratios.  A bias-corrected version of the T/I estimator was 
found to be less biased and to have smaller variance than the traditional estimator, under all possible 
values of adult return rate, sample size, and true T/I ratio.  Although the bias of the original estimator is 
positive, the bias of the corrected estimator is slightly negative.  Consequently, the traditional T/I ratio 
estimator has a greater chance of falsely identifying a transportation benefit effect from the bias-
corrected estimator.  An asymptotic lognormal 100 (1 )α−  confidence interval, constructed using the 
log of the bias-corrected estimator, is shown to have optimal coverage properties, compared to the 
asymptotic normal confidence interval, and has comparatively shorter interval length.  An example 
using the bias-corrected estimator with an asymptotic lognormal confidence interval is provided, using 
PIT-tag release and return data from the 1995 and 1996 transportation experiments. 

 Relationships between precision of the bias-corrected estimator and sample size are 
investigated under different values of true T/I, adult return rate, and α -level.  The variance of the T/I 
estimator under the scenario of the size of the inriver group estimated was also derived.  Sample size 
requirements for precision of this estimator is are generally exorbitant. 
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Executive Summary 

Objectives 

1. To investigate the statistical properties of a common used estimator (the transportation-to-inriver, 
or T/I, ratio) for assessing the benefits of transporting smolts around Columbia River Basin dams 
versus leaving them inriver.  Accuracy and precision were investigated using the delta method of 
approximating expectation and variance of an estimator. 

2. To develop a statistical model of the prototypical transportation experiment with clearly stated 
assumptions involving two possible scenarios.  One scenario describes the situation in which the 
control group size is known; the other describes the situation in which the control group size is 
unknown and must be estimated. The latter scenario arises when estimating the number of 
undetected fish passing through a hydroelectric project. 

3. To perform Monte Carlo simulations to evaluate alternative T/I ratio estimators and confidence 
interval (CI) calculations.   

4. To describe the precision of the T/I ratio estimator as a function of the number of fish in the 
transported and control groups, given particular values of adult return rate, true T/I ratio, and α -
level. 

5. To provide a numerical example of the T/I ratio estimator and CI calculations. 

Methods 

 A likelihood model was developed for the juvenile salmonid transportation experiment and 
assumptions stated.  Using the delta method, formulas for the mean, variance, and bias of the T/I ratio 
estimator were derived for two scenarios.  In the first scenario, the inriver group size C was assumed 
known, and in the second, it was assumed unknown and must be estimated.   

 A bias-corrected version of the T/I estimator was developed and compared with the original 
estimator, using Monte Carlo simulation methods.  The Monte Carlo methods consisted of simulating 
large numbers of the T/I ratio estimates under model assumptions, then computing sample means and 
variances which approximately equal the true expectation and variance of the estimators for large 
numbers of repetitions.  By examining the behavior of expectation and variance under different 
survival and sample (release) size conditions, a determination was made as to which of the estimators 
was better, given the conditions. 
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 Four alternative CI formulations were compared by simulating coverage probabilities of the T/I 
ratio under different values of adult return and release size, for true T/I values of 1.4 and 1.8.  The four 
alternatives consisted of two each constructed from the original and the bias-corrected estimators, one 
asymptotic lognormal, and the other asymptotic normal. 

 Having a chosen a best estimator and best CI, absolute precision of that estimator was explored 
as a function of sample (release) size for different α -levels, adult return rates, and T/I ratio values. 

 An example from real life using PIT-tag data was provided. 

Findings 

 Comparing the traditional T/I ratio estimator with a bias-corrected version of the T/I ratio 
revealed that under any regime of adult return rate, release size, and true T/I ratio, the bias-corrected 
version has less bias than the original T/I estimator.  The character of the bias is different between the 
two estimators.  Both estimators were found to have increased bias with decreasing adult return rate, 
larger values of T/I ratio, and smaller release sizes.  The original estimator has positive bias, while the 
bias-corrected estimator has a negatively smaller bias.  The practical implication is that the original 
estimator with its positive bias will, when adult return rates are small, produce an estimate of 
transportation benefit that is likely too high.  The positive bias could lead to the incorrect conclusion 
that transported juveniles have higher adult return rates than juveniles left to migrate inriver.  Using the 
bias-corrected estimator, on the other hand, there is a small chance the T/I ratio will underestimate the 
benefits of smolt transportation. 

 The bias-corrected estimator of the T/I ratio had smaller variance than the original estimator, 
particularly for small adult return rates, small sample (release) sizes, and large values of the true T/I 
ratio.  For tag release sizes greater than 100,000, there was little difference in the variances of the two 
estimators. 

 Coverage probabilities were estimated for four formulations of 95% CIs for the T/I ratio.  
Coverage probability is the probability a CI will contain the true T/I ratio.  The probabilities were 
estimated using Monte Carlo simulations under different return rates, T/I ratios, and sample sizes.  The 
best coverage properties, i.e., nominal coverage of the true T/I ratio and minimal coverage of false T/I 
ratios, were found for asymptotically lognormal CIs constructed from the bias-corrected estimator. 
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 Sample (release) sizes greater than 7500 are required to distinguish a T/I ratio of 1.4 from 1.0 
with 95% confidence if the adult return rate of the control group is 0.01.  If the control group adult 
return rate is 0.001, sample sizes grater than 75,000 are required; and for adult return rates of 0.0001, 
sample sizes of greater than 750,000 are required.  The above sample sizes will suffice when the 



control group release size is known.  If it is unknown and must be estimated with a coefficient of 
variation equal to 0.1, sample sizes greater than 325,000; 370,000; and 850,000 would be required to 
achieve the level of precision specified above, for adult return rates of 0.01, 0.001, and 0.0001, 
respectively. 

 An example data set, using PIT-tag data from the 1995 and 1996 transportation experiments, 
was used to compute the original and bias-corrected estimates for T/I ratio, an asymptotic normal 95% 
CI using the original estimator, and asymptotic lognormal 95% CI using the bias-corrected estimator.  
For the combined wild and hatchery data of 1996, the bias-corrected lognormal CI did not include 1.0, 
while the original estimator with an asymptotic normal CI did.  Large differences between the original 
and bias-corrected estimates were observed when return rates were very small (approximately 0.0005). 

Management Implications 

 Transportation is a central mitigation strategy of government programs to restore Columbia 
River Basin stocks to viable levels.  Accurate assessment of benefits due to transportation are 
paramount to decisions about its continued practice.  The statistical methods developed in this report 
should contribute to more accurate and precise information on transportation benefits and proper 
management decisions. 
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1.0 Introduction 

 Since 1991, eight evolutionarily significant units (ESUs) of Columbia River Basin salmon and 
steelhead (Oncorhynchus spp.) whose natal streams are upriver from Bonneville Dam have been listed 
as endangered or threatened under the Endangered Species Act (ESA 1973) (Table 1.1).  The ESA 
mandates the National Marine Fisheries Service (NMFS) to design research agendas whose results will 
guide policy toward restoration of listed stocks to sustainably viable levels.  In conjunction with the 
Bonneville Power Administration (BPA), US Bureau of Reclamation, and US Army Corps of 
Engineers (USACE), the NMFS’s Northwest Region has overseen more than 25 years of research into 
how to achieve this restoration.  The main focus of their freshwater research agenda was to mitigate 
effects of hydroelectric projects on salmon passage and survival.  The two main approaches to 
mitigation have been reengineering the hydroprojects and transporting juvenile salmon around them.  
This report concerns the latter enterprise. 

Table 1.1.  Columbia River Basin stocks originating above Bonneville Dam listed as threatened 
or endangered under the Endangered Species Act since 1991. 

 
 Evolutionarily Significant Unit Listed Listed Status Year Listed  

 Snake River Fall-run Chinook Salmon Threatened 1992  

 Snake River Spring/Summer-run Chinook Salmon Threatened 1992  

 Upper Columbia River Spring-run Chinook Salmon Endangered 1999  

 Columbia River Chum Salmon Threatened 1999  

 Snake River Sockeye Salmon Endangered 1991  

 Upper Columbia River Steelhead Trout Endangered 1997  

 Snake River Basin Steelhead Trout Threatened 1997  

 Middle Columbia River Steelhead Trout Threatened 1999  

From the NMFS website, http://www.nwr.noaa.gov/1salmon/salmesa/pubs/1pgr.pdf. 

 An estimated 15 to 20 million juvenile salmon and steelhead are transported from the Snake 
and Columbia rivers to below Bonneville Dam every year (Table 1.2) 
(http://www.nwd.usace.army.mil/ps/juvetran.htm) and tens to hundreds of thousands of wild and 
hatchery salmonid smolts are tagged with passive integrated transponder (PIT) tags or coded-wire-tags 
(CWT) so that transportation effects can be evaluated (Table 1.3) (Achord et al. 1992; Harmon et al. 
1993, 1995, 1996; March et al. 1996, 1998).  Juvenile bypass operations and juvenile transportation are 
the primary alternative mitigating strategies to dam-breaching.  USACE research dollars alone spent on 
transportation have exceeded 20 million dollars since 1971, and transportation has accounted for 
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approximately 7% of USACE’s fish mitigation construction costs and 16% of fish mitigation operating 
costs since 1983, exceeding a hundred million dollars.  Since 1983, nearly 20% of the USACE 
research budget went to study transportation.  Future USACE transportation research, with an annual 
budget of $3 million (Adele Merchant, USACE, e-mail communication) will benefit from the slated 
deployment of adult PIT-detectors at Bonneville and potentially other dams and from the new 134.2-
kHz ISO-based network of PIT-tag interrogation systems which replaced the old 400-kHz network and 
underwent final testing in 2000. 

Table 1.2.  Annual numbers of juvenile salmon and steelhead transported around Snake and 
Columbia river dams to below Bonneville Dam from 1982 to 1999.  Prior to 1993, fish were 
transported from Lower Granite, Little Goose, and McNary dams.  Since 1993, fish have also 
been transported from Lower Monumental Dam. 

 
 Year Juveniles Transported 

(to the nearest thousand) 
 

 1982 5,813,000  

 1983 7,516,000  

 1984 887,000  

 1985 14,320,000  

 1986 13,209,000  

 1987 16,417,000  

 1988 19,574,000  

 1989 14,944,000  

 1990 21,030,000  

 1991 15,366,000  

 1992 17,317,000  

 1993 14,798,000  

 1994 16,713,000  

 1995 18,568,000  

 1996 11,164,000  

 1997 12,246,000  

 1998 18,407,000  

 1999 18,806,000  

 Total 265,077,000  

Data compiled from Anderson et al. (2000). 
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Table 1.3.  Summary of transportation/inriver ratios (T/I) as described in the NMFS April 2000 White Paper “Summary of research 
related to transportation of juvenile anadromous salmonids around Snake and Columbia river dams.” 

 
Species/Run  Release

Location(s) 
Truck/ 
Barge 

Years Range of T/I 
(Confidence Intervals) 

No. of 
Studies 

Summary of T/I Results Average TSAR 
(Percentage) 

Comments 

 
Yearling Chinook 

 
Snake 

River dams 

 
T 

 
1968-1980 

 
0.7 – 18.1 

 
16 

 
2 – T < I 
2 – 0 adult return 
6 – T significant  > I 
10 – Too few adults to test 
         for significance 
 

 
0.0 – 9.0 

 

 
Subyearling 

Chinook 
 

 
McNary 

 
T 

 
1978-1983 

 
2.3 – 10.1 

 
  6 

 
6 – T significant > I 

  

 
Steelhead 

 
Snake 

River dams 
 

 
T 

 
1970-1978 

 
1.5 – 13.5 

 
13 

 
13 – T significant > I 

 
0.4 – 4.7 

 

 
Steelhead 

 
McNary 

 
T 

 
1978-1980 

 
1.3 – 3.0 

  
 3 

 
2 – T significant > I 
1 – T > I 
 

  

 
Sockeye 

 
Priest 

Rapids 

 
T 

 
1984-1988 

 
0.55 – 4.23 

    
No estimates of SAR because 
trapping efficiencies weren’t 
measured.  No analysis in 
1987, 1988 because of low 
flow. 
 

 
Yearling Chinook 

 

 
Lower 
Granite 

 

 
B 

 
1977-1980 

 
1978:  8.9 
1979:  3.9 

 
4 

 
2 – 0 adult return (1977, 
1980) 
2 T significant > I 

 
0.002 – 0.35 
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Table 1.3.   (Continued) 

Species/Run  Release
Location(s) 

Truck/ 
Barge 

Years Range of T/I 
(Confidence Intervals) 

No. of 
Studies 

Summary of T/I Results Average TSAR 
(Percentage) 

Comments 

 
Yearling Chinook 

 

 
Lower Granite 

 
? 

 
1986, 1989 

 
1986: 1.6 (1.01-
2.47) 
1985: 2.4 (1.4-4.3) 

   
0.32 (1986) 
0.12 (1989) 

 
No studies planned for 1987, 
1988 due to low flow. 
 

 
Yearling Chinook 

 

 
Lower Granite 

 
? 

 
1995, 

1996, 1998 

     
1995 was first year tagged C 
fish were released directly 
into tailrace of dam rather 
than transported to Little 
Goose. 
 

 
Yearling 

Chinook/Steelhead 
 

 
Lower Granite 

 
? 

 
1999 

     

 
Yearling Chinook 

 

 
McNary 

 
B 

 
1986-1988 

 
1987: 1.6 (1.18-
2.25) 
1988: 1.6 (1.0-2.6) 
 

 
5? 

 
1 – 0 adult return 
3 – CI included 1 

  

 
Subyearling 

Chinook 
 

 
McNary 

 
B 

 
1977-
1980, 

1986-1989 

 
1983:  2.9 
1986: 2.8 (1.4-5.6) 
1987: 3.5 (1.7, 
7.1) 
1988: 3.3 (1.3-9.4) 
 

 
4 
2 

 
4 – T significant > I 
2 – T significant > I 

 
0.9-4.7% 
1986:  1.3 
1989:  0.6 

 

 
Steelhead 

 

 
Snake River 

dams 
 

 
B 

 
1977-
1980, 

1986-1989 

 
1977-80: 1.7-17.5 
1986: 2.0 (2.4-2.7) 
1989: 2.1 (1.3, 
3.5) 
 

 
2 

 
2 – T significant > I 
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 Transportation studies require the use of some type of mark or tag which will allow for the 
tabulation of returning adults that were transported (T) as juveniles and for distinguishing them from 
returning adults that were not (C, control, of I, inriver).  Prior to 1995, CWT were used exclusively for 
evaluating  transportation experiments (NMFS 2000).  These are small bits of wire implanted in 
smolts’ nasal cartilage, and identify fish to a specific batch.  In 1986, Lower Granite Dam was 
equipped with instrumentation to detect PIT-tags tags in returning adults (Prentice et al. 1990a, b, c).    
PIT-tags are injected into the body cavity and identify individual fish.  The marking and handling of 
fish has been identified as a traumatic source of mortality in transported and control subjects (Mundy 
et al. 1994, US Fish and Wildlife Service 1993, NMFS 2000).  After 1992, juvenile were anesthetized 
prior to handling and marking, and this continuing practice has lessened its deleterious effects (NMFS 
2000). 

 Table 1.3 summarizes results of transportation experiments as reported in the NMFS White 
Paper (2000) entitled, A summary of research related to transportation of juvenile anadromous around 
Snake and Columbia river dams.”  Between 1968 and 1977, trucks were used exclusively to transport 
juvenile chinook, sockeye salmon, and steelhead trout around various Snake River dams and around 
McNary Dam located on the mainstem of the Columbia River just downriver from its confluence with 
the Snake.  Currently, barges transport fish during April through June, and trucks are used before and 
after this period (NMFS 2000).  This arrangement puts juvenile yearling chinook salmon and steelhead 
trout in barges for the most part (>95%) and juvenile subyearling chinook salmon in trucks.  Questions 
still exist concerning the potential benefits of smolt transportation.  Issues include delayed mortality of 
handled fish, changes in homing behavior, high mortality in transported fish, species differences in 
survival during and after transportation, high variability in river conditions within and between years 
which influence adult return rates in ways that are not well-understood, heterogeneity in experimental 
protocols, and lack of experimental replication.   

 Statistical methods of analyzing transportation experimental data have centered around the 
transportation-to-inriver survival ratio, T/I (also called transportation benefit ratio, TBR).  The widely 
used estimator of T/I benefit is the empirical ratio of transported-to-inriver smolt-to-adult return (SAR) 
rates.  This is the estimator used in Table 1.3.  A T/I ratio greater than 1 is indicative of a transportation 
benefit, while a value less than 1 would suggest a detrimental effect due to transportation.   

 In the following chapters, we develop the statistical properties of the empirical T/I ratio and list 
assumptions for the likelihood model on which it is based.  Statistical properties are investigated using 
asymptotic methods and Monte Carlo simulations.  We also develop a bias-corrected estimator of T/I 
ratio and investigate its statistical properties.  Optimal confidence interval coverage is also assessed.  
Precision of T/I ratios as a function of sample size will be described for different α -levels, adult return 
rates, and T/I ratio. 
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2.0 Statistical Methods 

 Increased survival due to juvenile transportation is demonstrated when the adult return rate of 
transported fish, , is higher than the adult return rate of control fish, , who outmigrate inriver.  

Figure 2.1 illustrates the basic transportation scenario in which  juvenile migrants are tagged at a 
site above a dam,  of these are transported around the dam, and C N

TS

T

CS

N
T= −  are returned to the river 

to migrate downstream.  The number of returning adults detected from the transported group is t  and 
the number of returning adults detected from the control group is .  The ratio of the adult return rate  
of transported fish  to the adult return rate of control fish ( / , 

c
( / )t T )c C

  
ˆˆ
ˆ

T

C

t
S tCTR c cTS

C

= = = , (2.1) 

has been termed the transportation benefit ratio (TBR) or the ratio of transported-to-inriver (T/I) 
survivals.   
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Figure 2.1.  Essential elements of transportation studies used to assess benefits to survival when 
the size of the untransported or control group is known.  N fish are marked and divided into two 
groups; control ( ) fish are left to migrate inriver while transported  fish are collected or 
barged to below Bonneville Dam.  The number of recovered adults from the transported  and 
control (  releases are  and c , respectively. 

C ( )T
( )T

)C t

 

Scenario 1:   T and C are known. 

N 

Dam X 

T C
c t 
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2.1 Likelihood Models 

 The assumptions used in the estimation of the T/I ratio are as follows: 

1. Each smolt has an equal probability of surviving and returning as an adult within a release 
group. 

2. Fates of all smolts are independent. 
3. All smolts have equal probability ( )p  of detection upon return as an adult. 
4. All smolt have equal survival below the downstream mixing zone for transported and 

control smolts. 

To construct the likelihood function, the following parameters are defined: 

 p  = probability an adult is detection upon return, 

  = survival probability for transported smolt, TS

  = survival probability for inriver/control smolt, CS

  = number of transport smolt released, T
  = number of transport smolt recovered as adults, t
  = number of inriver/control smolt released, C
  = number of inriver/control smolt recovered as adults. c

Based on the assumptions (1-4), ( ), Tt Bin T S p∼  and ( ), Cin C S p∼C B .  In which case, the joint 

likelihood model for a transportation/inriver study can be written as, defining /T CR S S= , 

  ( ) ( ) ( ) ( ) ( ), , , , , 1 1t T t c
C C C C

T C
L R S p t c T C RS p RS p S p S p

t c
C c

C
− −   

= − ⋅ −   
   

 

and further letting CS pθ =  

  ( ) ( ) ( ) ( ), , , , 1 1t T t cT C
L R t c T C R R

t c
θ θ θ θ .C cθ− −   

= − ⋅ −   
   

 (2.2) 

The maximum likelihood estimators for the model parameters are  and ˆ /c Cθ = ˆ /R tC Tc= . 

 
 8



2.2 Properties of R̂  

2.2.1 Variance of R̂  

 The T/I ratio estimator, R̂ , has variance 

  ( )
2

ˆ .C tVar R Var
T c

   =    
   

 

 The variance of  can be approximated by the delta method (Seber 1982, see also Appendix 
A), in which case 

/t c

  ( ) 2 1 1ˆ .RVar R R
TR C

θ θ
θ θ

− − = +  
�  

The variance can be estimated by the expression 

  m ( ) ( )2 1 1 1 1ˆ ˆ .Var R R
t T c C
 = + + +  

 (2.3) 

2.2.2 Expected Value of R̂  and its Bias 

 To the first-term Taylor series expansion 

  ( )ˆ .T

C

SE R
S

≅  (2.4) 

However, the delta method allows for estimation of the higher order bias in R̂ , to the third-term of a 
Taylor series expansion (Appendix A) 

  

( )
1

ˆ ˆBias 

1 1ˆ

c
CR R
cC
C

R
c C

 − 
=       

 = − 
 




 (2.5) 

which will always be greater than or equal to zero because c C≤ , so 
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  1 1 .
c C
≥  

2.3 Bias-Corrected R̂  

 Bias (2.4) can be subtracted from (2.1) to produce a bias-corrected estimator of R , 

  1 1 1 1ˆ ˆ ˆ ˆ 1BCR R R R
c C c C

  = − − = − +  
  

.


 (2.6) 

The variance of ˆ
BCR  can be approximated by the expression 

  
( ) ( ){

( ) ( )

22
2

2 2

2

1 1 1 1 1 1ˆ

1 1 11 1

BC
CVar R TR Var E
T c c Cc c c Cc

TR R TR R Var
c c Cc

θ

θ θ θ θ .

      = − + + −     +       
 ⋅ − + − ⋅ − + 

 

 (2.7) 

and estimated by the formula  

 m ( ) ( ) ( ) ( )2 2
2

2 2

1 1 1 1 2 1ˆ .BC
C c C c t T t c C cVar R t
T C c c Cc T C c c Cc

  −   −  −  −     = ⋅ + − + + −        
        

2

3 2 
 (2.8) 

2.4 Precision of R̂  and ˆ
BCR  

 In general, if φ  is any parameter and φ̂  is an estimator of φ , the absolute error in estimation of 

φ  defined as φ̂ φ− , which of course we desire to be small.  Sampling precision can then be expressed 

as the desire for the absolute error φ̂ φ−  to be less than ε , with probability 1 α− .  Or expressed more 

formally as 

  ( )ˆ 1P φ φ ε α− < = −  (2.9) 

or 

  ( )ˆ 1 .P ε φ φ ε α− < − < = −  

Then equivalently 
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( ) ( ) ( )

ˆ
1

ˆ ˆ ˆ
P

Var Var Var

ε φ φ ε α
φ φ φ

 − −
< < = 

 
 

−  

and assuming 

  
( )

( )
ˆ

0,1
ˆ

N
Var

φ φ

φ

− ∼  

then 

  
( ) ( )

1
ˆ ˆ

P Z
Var Var

ε ε α
φ φ

− < < = 
 

−   

  
( ) 2ˆVar

ε α

φ

− Φ =  
 

 (2.10) 

where  denotes the cumulative standard normal distribution.  Expression (2.9) leads to Φ

  ( )
1

2

ˆ .Z Varαε φ
−

=  (2.11) 

2.5 Unknown Control Group Size, C  

 This scenario has arisen in the more recent transportation/control studies of the Fish Passage 
Center, Columbia Basin Fish and Wildlife Authority, known as the Comparative Survival Studies 
(CSS).  In these studies, the inriver controls are composed of smolts estimated to have passed the 
release site undetected.  The controls have consisted of juveniles not detected at any downstream 
bypass system or detected at most at one bypass system.  In either case, the number of smolts in the 

control group must be estimated (  rather than known .  The scenario where C  is an estimated 
quantity is depicted in Figure 2.2. 

ˆ )C ( )C ˆ
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Figure 2.2.  Essential elements of transportation studies used to assess benefits to survival when 
the size of the untransported (control) group is estimated rather than known without error.  The 
size of C  can be estimated by a variety of release-recapture techniques. 

ˆ

ˆ

Scenario 1:   T known, C estimated by C . 

Dam X 

T             C  
c t 
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In this second scenario, the T/I ratio (2.1) becomes 

  2

ˆˆ

ˆ

t
tCTR

c cT
C

 
 
 = =
 
 
 

 (2.12) 

and the variance can be written as follows (Appendix A) 

  
( ) ( ) ( )

( )

2
2

2

2
2 2

ˆˆ ˆ

1 1 ˆ

Var R Var R R CV C C

RR R CV C C
TR C

θ θ
θ θ

= + ⋅

− − = + + 
 

�
 (2.13) 

and estimated by 

  m ( ) ( )2
2 2

2
1 1 1 1 ˆˆ ˆ ˆ .Var R R R CV C C
t T c C

 ≅ − + − + ⋅ 
 

 (2.14) 

The estimator of R  when  must be estimated can be written as C

  2

ˆ 1 1ˆ 1 ˆBC

tCR
cT c C

= − +
 

.  (2.15) 

The variance of 2
ˆ

BC
R  can be approximated by 

  
( ) ( ) ( ) ( ) ( )

( ) ( )

2 22

2 3 3

22 2

2 2

2 1 1 1ˆ

1 ˆ

BC

R C C CRVar R
C

R C CV C C
C

Rθ θ θ θ θ
θ

θ

θ

θ

− − − + − + −
=

−  +  

�
 (2.16) 

with variance estimator 

  
m ( )

( )

22

2 3 3

2
2

ˆˆ 2 1 1 1

1 ˆˆ .

BC

R c c RC cVar R c c
c C C c C

cR CV C C
c

      = − − − + − + + −      
     

−   +   
 

t
T

  (2.17) 

 
 13



The quantity (Ĉ C )CV  is the coefficient of variation of C  [i.e., ˆ ( )ˆSE θ θ ] given the true number of 
control fish is .  Equation (2.13) can be substituted into Equation (2.11) to explore absolute precision 

as a function of 

C

( )ˆCV C C .   

3.0 Monte Carlo Simulation Results 

3.1 Bias of R̂  and ˆ
BCR  

 Section 2.2 demonstrated that R̂  is a biased estimator of the true T/I ratio, R .  In this section, 

we investigate the accuracy of R̂  and of ˆ
BCR  (Section 2.3) to estimate R  as a function of control and 

transported recovery probabilities θ  and Rθ , and release sizes T and C (in this investigation, they well 
be assumed equal).  Because bias is defined as the difference between the expected value and the true 

value of an estimator , we can investigate bias by plotting the expected values of R̂  and ˆ
BCR , and 

comparing these values with the true value.   

 Figure 3.1 shows the delta-method expectation, , (dotted-dashed line) plotted as a 

function of 

ˆ( )dmE R

θ , the control group return rate, when the true T/I ratio, R , is 1.4 and release sizes T C=  
= 25,000 fish.  The range of values of θ  were chosen from adult returns based on CWT release-
recovery data on spring yearling chinook salmon between 1986-1988 (Townsend and Skalski 2000).  

The plot illustrates that as θ  decreases in size, the bias of R̂  becomes increasingly positive.  For 
control return rates as high as 0.1%, there is still appreciable positive bias associated with the estimator 

R̂  (Equation 2.1).  In fact, the delta method approximation to the bias of R̂  (Equation 2.5) actually 

underestimates the true magnitude of the bias associated with R̂  (Figure 3.1). 
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Figure 3.1.  Delta method (dm) and simulated (Monte Carlo, mc) values of the expected value of 
R̂  and of ˆ

BCR  when the true T/I ratio is 1.4, release sizes T C=  = 25,000, and θ  varies over the 
range 0.00005-0.001. 
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 The bias-corrected estimator ˆ
BCR  is seen to have a negative bias based on the Monte Carlo 

simulation studies (Figure 3.1).  However, the absolute magnitude of the bias is less for ˆ
BCR  than R̂  

for all values of θ .  Furthermore, the estimator ˆ
BCR  becomes asymptotically unbiased for values of θ  

much smaller than that required for R̂  (Figure 3.1). 

 Figures 3.2 and 3.3 investigate the effects of changing the true T/I ratio, R , and release sizes of 
fish in the transported and control groups T  and .  Figure 3.2 shows delta method and Monte Carlo 

expected values of 

C

R̂  and ˆ
BCR , when fish group sizes were held at T C=  = 25,000 (Figure 3.1) but 

true T/I ratio, R = 1.9.  Figure 3.1 and 3.2 are qualitatively very similar.  Figure 3.3 shows delta-

method and Monte Carlo expected values of R̂  ˆ
BCR , when true T/I ratio, R  = 1.4, but release sizes 
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were increased to T = C = 100,000.  Numbers of fish released in a study make a big difference in the 

extent of bias (largest amount).  In Figure 3.3, the bias of ˆ
BCR  is nearly zero for values of θ  larger 

than 0.0002.  Bias in R̂  is also smaller for the same values of θ , when group sizes are increased from 
25,000 t0 100,000.  However, there is still a positive bias when θ  = 0.001. 

 The irony  of using R̂  in analyzing T/I studies is that as release sizes (  and/or recovery 
rates (

, )T C
)θ decrease, the estimated T/I ratio increases due to estimation bias.  In other words, the poor the 

study design, the more likely the resulting estimate of R  is prone to show a transport benefit.  The 
bias-corrected estimator, on the other hand, is likely to produce an unbiased or slightly negative 
estimate of the benefit of transportation. 

 

Figure 3.2.  Delta method (dm) and simulated Monte Carlo (mc) values of the expected value of 
R̂  and ˆ

BCR  when the true T/I ratio R  = 1.8, T C=  = 25,000, and θ  varies over the range 0.00005 
to 0.001. 
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Figure 3.3.  Delta method (dm) and simulated (Monte Carlo, mc) values of the expected value of 
R̂  and ˆ

BCR  when the true T/I ratio R  = 1.4, T C=  = 100,000, and θ  varies over the range 
0.00005 to 0.001. 
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3.2 Sampling Variance of R̂  and ˆ
BCR  

 As in the previous section 3.1, the Monte Carlo simulation results provide characterizations of 
the true performance of the estimators and their variances.  Figure 3.4 illustrates that the true variance 

of R̂  [i.e., Var ] is greater than the true variability in the bias-corrected estimator ˆ( )mc R ˆ
BCR  [i.e., 

].  The magnitude of the variances for ˆ( BCVar R )mc R̂  and ˆ
BCR  are asymptotic to similar values for large 

release sizes (  and recovery rates ()T C= θ ). 
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 The variance estimator for R̂  [i.e., Var ], however, is shown in Figure 3.4 to 

underestimate the true variance [i.e., Var ] of the estimator.  In contrast, the variance estimator for 

ˆ( )dm R

ˆ( )Rmc

ˆ
BCR  [i.e., Var ] has a tendency to overestimate the true variance associated with the estimator 

[i.e., Var ].  For a variance estimator to be valid, it should equal the true variance in 

expectation.  If it is not unbiased, the variance estimator should at least be a conservative estimator, 

with values greater than the true value.  Hence, the Var  of Equation (2.3) is neither valid nor 
conservative.  Figures 3.5 and 3.6 show the same variance relationships as Figure 3.4 except for 
different values of 

ˆ(mc BCR

ˆ( )BCR

)

dm

m ˆ( )R

R  and release sizes ( )T C= . 

Figure 3.4.  Delta method (dm) and simulated (Monte Carlo, mc) values of the expected variance 
of R̂  and ˆ

BCR  when the true T/I ratio R  = 1.4, T C=  = 25,000, and θ  varies over the range 
0.0005 to 0.002. 
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Figure 3.5.  Delta method (dm) and simulated (Monte Carlo, mc) values of the expected value of 
R̂  and ˆ

BCR  when the true T/I ratio R  = 1.8, T C=  = 25,000, and θ  varies over the range 0.0005 
to 0.002. 
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Figure 3.6.  Delta method (dm) and simulated (Monte Carlo, mc) values of the expected value of 
R̂  and ˆ

BCR  when the true T/I ratio R  = 1.4, = 100,000, and θ  varies over the range 0.0005 to 
0.002. 
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3.3 Coverage Probability of 95% Confidence Intervals for R̂  

 A small variance or estimated standard error means greater precision for an estimation but 
precision by itself cannot account for how likely it is that a (1 - α ) 100% confidence interval for R  
will contain the parameter value.  Therefore, in this section, we will investigate how often a (1 - α ) 
100% confidence interval is likely to include the true value of R . 

θ

 It is desirable that a (1 - α ) 100% confidence interval for R  contain the true value (1 - α ) 
100% of the time, but it is also desirable that it exclude values of R′  not equal to R  as often as 
possible.  An estimator whose confidence interval coverage probability is maximum at the true value 
and drops precipitously for values smaller or larger than the true value of the parameter is both precise 
and has a greater likelihood of excluding false values. 
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 To estimate the probability of coverage of a 95% confidence interval, a large number of such 
intervals are simulated using Monte Carlo methods, and then the percentage of those containing R  or 
R′  is computed.  Figure 3.7a (solid line) displays the estimate probability of coverage of R  = 1.4 and 
various other values of R′  for the situation when θ  is equal to 0.0005, T C=  = 25,000, and using the 
asymptotic normal approximation 

  m ( )ˆ 1.96 .ˆR Var R±  (3.1) 

The dashed line in Figure 3.7a is the coverage probabilities using the asymptotic normal confidence 

interval for ˆ
BCR  where 

  m ( )ˆ .BC
ˆR Var R±  (3.2) 

The log-linear form of estimator R̂  suggests a log-transformation may better approximate a normal 
distribution.  Hence, assuming the estimators of R  are log-normally distributed, asymptotically log-
normal confidence intervals of the following form were also computed where 

  
( )

2

ˆ
1.96 ˆˆ

dm

BC

Var R
RR e

±

⋅  (3.3) 

and 

  
( )
2

ˆ
1.96 ˆˆ

dm BC

BC

Var R
R

BCR e
±

⋅  (3.4) 

for R̂  and ˆ
BCR , respectively.  Asymptotic log-normal confidence intervals of the form (3.3) and (3.4) 

are plotted in Figure 3.7b.  Figure 3.8 presents another series of coverage plots when T  = 20,000; C=
R  = 1.4; θ  = 0.002. 

 Examination of the coverage plots in Figures 3.7 and 3.8 indicates nominal coverage 

probabilities are better attained with the log-transformed estimates of R̂  and ˆ
BCR , rather than the 

untransformed estimators.  Coverage plots are comparable for both estimators R̂  and ˆ
BCR .  We 

therefore recommend that confidence intervals be calculated using Equation (3.3) or (3.4). 
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Figure 3.7.  Estimated coverage probabilities of 95% confidence intervals for R′  when R  = 1.4.  
Each estimated probability was computed from 100,000 simulations.  Each simulation was 
generated as described in Section 3.1, using θ  = 0.0005 and T C=  = 25,000.  Top graph (a) was 
constructed from asymptotic normal confidence intervals of the form (3.1, solid line) and (3.2, 
dotted line).  Bottom graph (b) was computed using asymptotic log-normal confidence intervals 
of the form (3.3, solid line) and (3.4, dashed line). 
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Figure 3.8.  Estimated coverage probabilities of 95% confidence intervals for R′  when R  = 1.4.  
Each estimated probability was computed from 100,000 simulations.  Each simulation was 
generated as described in Section 3.1, using θ  = 0.002 and T C=  = 25,000.  Top graph (a) was 
constructed from asymptotic normal confidence intervals of the form (3.1, dashed line) and (3.2, 
solid line).  Bottom graph (b) was computed using asymptotic log-normal confidence intervals of 
the form (3.3, dashed line) and (3.4, solid line). 
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3.4 Sampling Precision of ˆ
BCR  

 In Sections 3.1 through 3.3, it was demonstrated that ˆ
BCR  is a better estimator of R  than R̂ .  It 

is more accurate (has smaller bias, Section 3.1), more precise (smaller variance, Section 3.2), and when 
used in conjunction with a log-transformation, produces confidence intervals with the best coverage 

properties (Section 3.3).  In  this section, we explore the relationship between the precision of ˆ
BCR  

(Equation 2.7), release group size (i.e., T , ), and values of C θ  and R .  (Throughout this section, 1 - 

α  = 0.95.)  Figure 3.9 shows how precision of ˆ
BCR  varies with sample size when θ  = 0.001 and R  = 

1.0, 1.2, 1.4, 1.6, and 1.8. 

 

Figure 3.9.  Absolute precision of ˆ
BCR  (Equation 2.7) as a function of release size (T ) when C=

θ  = 0.001 and R  = 1.0, 1.2, 1.4, 1.6, and 1.8. 
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The larger R  is, the larger the sample sizes must be to obtain a specified level of precision.  For 

example, a sample size of 50,600 is required to ensure that, with 95% probability, ˆ
BCR  will be within 

0.6 of R  = 1.8.  To ensure it will be within 0.6 of R  = 1.0 would required 18,400 fish.  Rather large 
sample sizes are required for sufficient precision to distinguish R  = 1.4 from R  = 1.0 (T  = 
77,700).  Figure 3.10 illustrates the effect of increasing 

C=
θ  from 0.001 to 0.01.  For θ  = 0.01, a sample 

size of 7,600 is required to ensure with 95% probability that ˆ
BCR  will be within 0.04 of ± R  = 1.4. 

 

Figure 3.10.  Absolute precision of ˆ
BCR  as a function of release size (T C)=  when θ  = 0.01 and 

R  = 1.0, 1.2, 1.4, 1.6, and 1.8. 
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 Table 3.1 presents sample sizes required to be within ε  = 0.4 of true R  with probability 100 
(1 )α−  when true R  = 1.4 for given values of θ .  Figure 3.11 illustrates the relationship between the 

precision of ˆ
BCR  and sample size when R  is held at 1.4 and θ  = 0.0005, 0.001, 0.002, 0.005, 0.01, or 

0.03.  (The dot-dashed curve in 3.10 gives the same information as the dot-dot-dot-dashed curve in 
Figure 3.12.) 
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Table 3.1.  Sample sizes (  required to achieve an absolute precision (Section 2.4) of )N T C= = ε  
= 0.4 when R  = 1.4 for the given adult return rate, θ , and 1 α−  = 0.80, 0.95. 

 
θ  α  

Sample sizes  ( )N T C= =  required 
to achieve precision, ε  = 0.4, when 

R  = 1.4 

 

 0.05 7,600  

 
0.01 

0.20 <4,000  

 0.05 77,700  

 
0.001 

0.20 31,400  

 0.05 155,500  

 
0.0005 

0.20 63,300  

 0.05 778,200  

 
0.0001 

0.20 315,100  
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Figure 3.11.  Sampling precision for ˆ
BCR  (Equation 2.7) as a function of release size ( )T C=  

when R  = 1.4 and θ  = 0.0005, 0.001, 0.002, 0.005, 0.01, and 0.03. 
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 Figure 3.12 explores the relationship- between precision of ˆ
BCR  and sample size when Scenario 

2 exists; that is, when the control group size, , is an unknown random variable, .  Equation (2.8) is 

substituted into Equation (2.7).  When the coefficient of variation (CV) of C  is equal to 0, the variance 

of  is 0, and the curve (solid line) is the same as the dot-dashed plot in Figure 3.10.  Increasing the 

CV to 0.1, i.e., the standard deviation of C  is one-tenth of the mean of C , produces a great deal more 

uncertainty about 

C Ĉ
ˆ

Ĉ
ˆ ˆ

ˆ
BCR .  And if the CV ( ) = 0.5, the precision is absurdly small for sample sizes as 

great as 140,000.  Table 3.2 shows sample sizes required for precision, 

Ĉ

ε , when true R  = 1.4 for 
selected θ  and α , and in the case where  must be estimated.   C
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Figure 3.12.  Absolute precision of ˆ
BCR  as a function of release size (T C)=  when R  = 1.4, θ  = 

0.01, and coefficient of variation (CV) of C  = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. ˆ
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Table 3.2.  Sample sizes (to nearest 100), N T C= = , required to achieve an absolute precision 
(Section 2.4) of ε  = 0.4 when R  = 1.4 for the given adult return rate, θ , and 1 α−  = 0.80 or 0.95 
in the case where C  must be estimated. 

 
 

θ  α  CV of  Ĉ
Sample sizes  ( )N T C= =  required 
to achieve precision, ε  = 0.4, when 

R  = 1.4 

 

 0.05 0.1 325,400  

 0.20 0.1 374,300  

 0.05 0.5 927,900  

 0.05 0.5 839,800  

 0.20 0.1 195,700  

 0.20 0.1 436,600  

 0.05 0.01 850,800  

 

 

 

0.04 

0.05 0.5 983,000  
 

 

3.5 Example 

 Table 3.3 presents juvenile release and adult return data for groups of transported and control 
fish PIT-tagged in 1995 and 1996 and released inriver or barged from Lower Granite Dam.  Data is 
from the second-tier database, Data Access in Real Time (DART), managed by the University of 
Washington and from Marsh et al. (1997).  The column labeled T  contains numbers of PIT-tagged 
spring/summer chinook salmon smolts (hatchery, wild, and combined)  barged from Lower Granite 
Dam.  The column labeled C  contains numbers of PIT-tagged fish (hatchery, wild, and combined) 
released into the tailrace of Lower Granite Dam.  Columns labeled t  and  are adult returns from the 
transported and inriver groups, respectively.  The last two columns present estimates of the T/I ratio 

using estimators 

c

ˆ tcR
cT

=  and 1 1ˆ 1BC
tCR
cT c C

 = − + 
 

. 
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Table 3.3.  Release and adult return numbers of wild, hatchery, and combined spring/summer 
yearling chinook salmon PIT-tagged and released or barged from Lower Granite Dam in 1995 
and 1996, and the original transported-to-inriver (T/I) ratio estimates, R̂ , and bias-corrected 
estimates, ˆ

BCR T⋅  and C  are the numbers of PIT-tagged transported and control smolts released, 
respectively, and  and  are the adult returns from the transported and inriver groups, 
respectively. 

t c

Transported Group Inriver Group 
Year Group 

Releases, T  Returns,  t Releases, C  Returns, c  R̂  ˆ
BCR  

 Hatchery   83,149 457 105,875 328 1.7741 1.7687 

1995 Wild   24,075   91   31,733   64 1.8742 1.8449 

 Combined 107,224 548 137,608 392 1.7941 1.7895 

 Hatchery   37,190   51   53,976   53 1.3966 1.3703 

1996 Wild     8,791   10   14,078     7 2.2877 1.9611 

 Combined   45,981   61   68,054   60 1.5047 1.4797 

 

Data sets in which the value of  is very small relative to C  show the largest differences between 

estimated values 

c
ˆ

BCR  and R̂ .  Of the 14,078 wild spring/summer chinook salmon PIT-tagged and 

released in 1996 to migrate inriver, only 7 adult returns were recorded.  The difference between ˆ
BCR  

and R̂  was much larger for this data set than the others.  The adult return rate for the control group of 
this data set was θ  = 0.0005 (Table 3.4).  The 95% asymptotic lognormal confidence interval for this 
data was also much wider than the other datasets (Table 3.4). 

Table 3.4.  Estimates computed from transported and inriver releases and returns in Table 3.3 
(see text for explanation). 

Year Group ˆ c
C

θ =  
95% Asymptotic Lognormal 

Confidence Interval Using ˆ
BCR  

95% Asymptotic Lognormal 
Confidence Interval Using  R̂

 Hatchery 0.0031 (1.54, 2.04) (1.52, 2.03) 

1995 Wild 0.0020 (1.34, 2.53) (1.28, 2.47) 

 Combined 0.0028 (1.57, 2.04) (1.56, 2.03) 

 Hatchery 0.0010 (0.93, 2.01) (0.86, 1.93) 

1996 Wild 0.0005 (0.80, 4.80) (0.08, 4.50) 

 Combined 0.0009 (1.04, 2.11) (0.97, 2.04) 

 

 Table 3.4 contains estimates of θ  for the data in Table 3.3, and 95% asymptotic lognormal 

confidence intervals using ˆ
BCR  and 95% asymptotic normal confidence intervals using R̂ , intervals of 
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form (3.4) and (3.1) (Section 3.4), respectively.  In one instance, the two methods produced results 
with a substantive difference.  The combined wild and hatchery releases from 1996 recorded a 95% 

asymptotic lognormal CI using ˆ
BCR  of (1.04, 2.11) compared to the 95% asymptotic CI using R̂  of 

(0.97, 2.04).  Although the difference is small, the former CI excludes 1.0, indicating a statistically 
significant transportation benefit while the standard  analysis does not. 

ε

4.0 Discussion and Summary 

 This research found a bias correction to the traditional estimator of the effects of transportation.  
The traditional estimator was found to be positively biased over a wide range of release sizes and 

recovery rates.  The variance estimator for R̂  was also found to be negatively biased.  The new bias-
corrected estimator has a slight negative bias only under extremely small release sizes or recovery 
rates.  Its variance estimator is both valid and conservative.  CI estimators based on the assumption of 

lognormally distributed R̂  estimates provided both [?] interval coverage than asymptotic normal 
interval estimators.  These results on improved estimators, variance estimators, and CIs should 
improve the statistical reliability of transportation benefit analyses. 

 Using the best statistical methods developed in this research, sample size requirements for 
distinguishing R  = 1.4 from R  = 1.0 with 95% confidence are to the nearest hundred, 7,600; 77,700; 
and 155,500 when the control group adult return rates is 0.01, 0.001, and 0.0005, respectively.  If the 
control group size is unknown and must be estimated, sample size requirements are higher.  If the 
control group release size is estimated with a CV of 10%, then the sample size requirements to achieve 
the same precision (i.e., R  = 1.4,  = 0.4, 1 α−  = 0.95) will be 325,400; 374,300; and 850,800 for 
control group adult return rates of 0.01, 0.001, 0.0001, respectively. 

 In an example of formulas derived in this research to PIT-tag data from the 1995 and 1996 
transportation experiments, a large difference was found between the original T/I estimators (Eq. 2.1) 
and the bias-corrected estimator developed here (Eq. 2.5) for a dataset in which  is very small relative 

to , i.e., when 

c

C θ̂  is approximately 0.0005.  The best CI formulation developed in this research, the 
asymptotic lognormal CI constructed using the bias-corrected estimate was applied to the example 
data, as was the formula for an asymptotic normal CI constructed using the traditional T/I ratio 
estimator (Eq. 2.1).  In one example dataset, this best CI did not include R  = 1.0 in the interval, while 
the asymptotic normal CI did. 
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Appendix A:  Derivations of Some Chapter 2 Results 

The Delta Method 

 The function ( ) ( 1 2, , , n )f x f x x x= …  can be written as a Taylor series expansion of f  about 

( ) ; 1,i i ,E x u i= = … n  as follows: 

  ( )
( )( )( )

1
.

!

kk

k

f x x
f x

k
µ∞

=

−
=∑  

The first three terms provide a reasonable approximation: 

  ( ) ( ) ( )
( )( ) 2

1 1 1

,
2!

n n n
i i i j

i i
i i ji i

x xdf ff x f x
dx x x

µ µ
µ µ

= = =

− − ∂
= + − +

j∂ ∂∑ ∑∑�  

where all derivatives are evaluated at ; 1, ,i ix i nµ= = … .  Then ( )( )E f x  can be approximated by 

taking the expectation of the first-term expansion, ( )f µ , or the third-term expansion above.  Because 

the second term on the right-hand side is equal to ( ) ( ) ( ) 0µ µE x E x Eµ µ− = = − =− , the 

expectation of the third-term expansion is 

  ( )( ) ( )
( )( ) 2

1 1
,

2!

n n
i i i j

i j i j

x x fE f x f E
x x

µ µ
µ

= =

− − ∂
= +   ∂ ∂ 

∑∑  

and if ix  and jx  are independent for all  the above equation reduces to ,i j

  ( ) ( ) ( ) ( ) ( ) ( )2

1 1
.

2 2

n n
i i i i i

i i

f E x f Var x
f f

µ µ µ
µ µ

= =

′′ ′′− ⋅
+ = +∑ ∑  (A1) 

 The variance of ( )f x  is typically approximated by taking the variance of the second-term 

expansion, and in the case of independent variables ix  and jx  is written 

  ( ) ( )( ) ( ) ( )
1 2

1

.
1!

n n
i i i

i
i i

f x
Var f f Var x

µ µ
µ

=

 ′ −
′+ =     

 
∑ ∑ iµ  ( A2) 
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Variance of ˆ
BCR  

 The derivation of Equation (2.6) is as follows.  From Equation (2.5), we have 

  ( ) 1 1ˆ 1BC
tCVar R Var
cT c C

. = − +

   

 (A3) 

Then 

  ( )
2

2

1 1 1ˆ
BC

CVar R Var t
T c c Cc

    = −   +     
 

and we need to find the variance of the product of  and t 2

1 1 1
c c Cc
− + .  The general formula for the 

variance of two independent factors is  

   (A4) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2 ,Var xy E x Var y E y Var x Var x Var y= + + ⋅

and substituting  for t x  and 2

1 1 1
c c Cc
− +  for  gives y

  
( ) ( )[ ]

( ) ( )

22
2

2 2

2

1 1 1 1 1 1ˆ

1 1 1 .

BC
CVar R E t Var E
T c c Cc c c

Var t Var t Var
c c Cc



Cc
      = − + + −      +       
 ⋅ + ⋅ − + 

 

 (A5) 

From assumptions 1-4 , Section (2.1) we have ( )E t TRθ= , ( ) ( )1t TR RVar θ θ= − , ( )E c Cθ= , and 
( ) ( )1Var c Cθ θ= − .  Substituting the appropriate terms in (A5) gives 

  
( ) ( ){

( ) ( )

22
2

2 2

2

1 1 1 1 1 1ˆ

1 1 11 1

BC
CVar R TR Var E
T c c Cc c c Cc

TR R TR R Var
c c Cc

θ

θ θ θ θ .

      = − + + −     +       
 ⋅ − + − ⋅ − + 

 

 (A6) 
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The terms 2

1 1 1
c c Cc

 − + 
 

Var  and 2

1 1 1E
c c Cc

 − +
 


  can be derived using the delta method, as follows.  

The variance of the second-term Taylor series approximation of 2

1 1 1
c c Cc
− +  around ( )E c  is 

  ( )
( )

( )
2 2

2 3 2 2 2 3 3 3 2

1 2 1 1 2 11
E c

Var c C
c c Cc C C C

θ θ
θ θ θ

  − + − = − − + −  
  

.



 (A7) 

The first-term Taylor approximation to 
( ) ( ) ( )2 2

1 1 1 1 1 1E
c c Cc E c E CcE c

      − + = − +          
� 




 is 

  2 2 2

1 1 1 .
C C Cθ θ θ

− +  (A8) 

The variance of ˆ
BCR  can be approximated by the expression 
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 (A9) 

and estimated by the formula 

  

m ( ) {
( ) ( )
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2 2
2

2 3 2 2
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2 3 2
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Expected Value of R̂  

 The first-term Taylor approximation is 

  

( )ˆ

( )
( )

.

CtE R E
Tc

E Ct
E Tc
CTR
TC

R

θ
θ

 =  
 

=

=

=

�  

 

Variance of R̂  
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2

ˆ

.

CtVar R Var
Tc

C TVar
T C

 =  
 

   =       

 

Using the delta method approximation 

  

( ) ( ) ( )
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( ) ( )

2 2
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2 2 2 2
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2
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1 1
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Variance of 2
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 
=  
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 This derivation relies on the identity, 

  [ ] ( ) ( ) .Var x E Var x y Var E x y  = +      

Conditioning on  gives C
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ˆ ˆ ˆ

.tC tC tCVar E Var C Var E C
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.  Substituting these quantities into (A11) 
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 (Chapter 2) into the above gives 
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Variance of 2

ˆ 1 1ˆ 1 ˆBC
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  = − +  
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 Using the delta method and defining f  as 
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and 
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Substituting these and Var ( ) ( )1t TR Rθ θ= −  and ( ) ( )1c CVar θ θ= −  into (A2) gives 
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